If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+2x-396=0
a = 9; b = 2; c = -396;
Δ = b2-4ac
Δ = 22-4·9·(-396)
Δ = 14260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14260}=\sqrt{4*3565}=\sqrt{4}*\sqrt{3565}=2\sqrt{3565}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{3565}}{2*9}=\frac{-2-2\sqrt{3565}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{3565}}{2*9}=\frac{-2+2\sqrt{3565}}{18} $
| 4t=5t−5 | | -2+2x=6x-42 | | x^2+x-0.19=0 | | -7h=-6h+4 | | b=10+3b | | 7.5+2.5(1-3.5r)=19.5 | | 5f-8=6f | | (7x-4)+(10x=3)+19 | | 5x+18=x-18 | | 8x-28-2×=10 | | -6−4u=-5u | | (7x-4)+(10x=3)+19=52 | | 0.75x-9=4x+4 | | 5x-11=-101 | | 9x+4x−12x=16 | | 5x−2(2x-1)=6 | | 5^(4x-3)=625 | | (2^x)+(4^x)=72 | | 500-30y=130-20y | | -6x+9=6x-2 | | 6x-12+3x=180 | | 5x-3x+2=28-4-7x | | (6x-12)+(3x)=180 | | X^2-7x=7x+32 | | x+x(7)=90 | | (4x-20-(50/x))=0 | | 14+7x-9=10x-7 | | 8x-31=86 | | p^2=99 | | 4x-20-50/x=0 | | (5x+50)(6x+54)=0 | | x^2-0.05x-0.00005=0 |